
SiGe MMICS and Flip-Chip MICS for
Low-Cost Microwave Systems

Michael Case, Member IEEE
Hughes Research Laboratories, 3011 Malibu Canyon Road

Malibu, California 90265-4799, (310) 317-5793

Abstract

Recent Progress in SiGe device technology has
improved cutoff frequencies of these devices to
beyond 200 GHz. This work describes two ap-
proaches for implementing distributed structures
with Si substrates: microstrip transmission lines
using thick polyimide over a ground plane on the
substrate (polyimide MMIC) and small Si de-
vices or chips flip-chip mounted onto a micro-
wave circuit board containing the distributed
elements (flip-chip MIC). Microwave circuits
such as amplifiers, oscillators, mixers, and fre-
quency dividers have been demonstrated using
both techniques.

Introduction

In order to fully utilize the performance of

high-speed semiconductor devices, microwave

components such as inductors, tuned matching

networks, reactive loading, power splitters, etc.

are required [1]. Monolithic microwave inte-

grated circuits (MMICS) using distributed ele-

ments such as transmission lines for such com-

ponents are commonly implemented on semi-

insulating (S1) III-V compound semiconductor

substrates (GaAs or InP).
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Figure 1. Cross-sectional diagram of our implemen-
tation of a Si-based MMIC using polyimide microstrip
transmission lines, The polyimide and gold that form
transmission lines is deposited on top of convention-
ally processed Si wafers.

Typical foundry prices range from
$1 .00/mm2 for GaAs at low microwave frequen-
cies (<1 O GHz) to $ 10.00/mm2 for InP mm-wave
(>40 GHz) circuits. These costs prohibit com-
mercial use of all but the most simple MMIC or
discrete device. The cost of typical high-
performance Si and SiGe bi olar technologies

!?range from $0.10 to $0.40/mm .
Recent improvements in Sil-XGeX/Si hetero-

@nction bipolar (HBT) transistors have in-
creased cutoff frequencies to 50-200 GHz
[2,3,4], approaching those of III-V HBTs and
even high-electron-mobility transistors
(HEMTs). A significant problem with Si based
MMICS is the lack of a S1 Si substrate. High
resistivity silicon has been used [3], however
these substrates are often more costly than their
III-V counterparts and are not always compatible
with standard, industrial Si production lines.
The work presented here describes two ap-
proaches for integrating distributed elements
with high-frequency Si devices: the polyimide
microstrip MMIC (figure 1) and the flip-chip
MIC (figure 2).
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Figure 2. Cross-sectional diagram of a flip-chip MIC.
The flip-chip can either be a discrete transistor, or a
complex Integrated circuit. The active die is attached
to the passive substrate using solder bumps.
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Figure 3. Loss vs. frequency for 50 Q microstrip
transmission lines on three substrates: 250 pm Du-
roid, 100 pm GaAs, 13 pm polyimide. The polyimide
loss is measured data, the others are calculations.
Peaks in the measured data result from the meas-
ured line being an integer-multiple of a half-
wavelength.

Figure 3 shows a comparison between the
losses of 50 Q microstrip transmission lines us-
ing three different dielectrics with their typical
thicknesses: 250 pm Duroid [6], 100 pm GaAs,
13 pm polyimide [7]. For good dielectrics, the
loss of a microstrip line is dominated by metal
resistivity, and since a wider metal line is needed
for thicker substrates to maintain the desired im-
pedance, a thicker substrate will generally
vide lower loss [5].

Polyimide Microstrip MMICS

Polvimide microstri~ transmission lines

pro-

con-
sist of ~ metal ground-filane that is the top-most
layer of metal on a standard processed Si IC wa-
fer, and a thick layer of polyimide which sup-
ports the microstrip line (figure 1) [5]. This
structure is then a conventional MMIC using the
components from a standard Si IC process
(transistors, resistors, capacitors, diodes, etc.)
under the ground plane with the transmission

line elements above. Such a structure makes
highly integrated circuits possible, for example,
by including microwave circuits (low-noise am-
plifiers, mixers, oscillators, etc.) on the same
chip as signal processing and digital circuitry.

We are currently working with IBM using
their 200 mm SiGe bipolar technology [2]. In
this variation of a standard Si IC process, we
have three levels of metalization normally used

for interconnections. We use the top-most layer
of metal as a ground-plane for the microstrip
transmission lines, but the ground-plane must
have openings to allow connections between the
lines above the and the devices below.

Figure 4. A Ku-Band driver amplifier using polyimide
microstrip transmission lines. Large circles are ca-
pacitors and small circles are vias between devices
under the ground-plane and the microstrip lines.
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Figure 5. Output power and gain vs. input power for
amplifier shown in figure 4. Small-signal gain is 7 dB,
and 1 dB compression occurs at 40 mW output
power (12 GHz).

Figure 6, Photograph of a Ku-Band VGO with buffer
amplifier. Distributed elements are implemented us-
ing polyimide microstrip transmission lines.

0-7803-4603-6/97/$5.00 (c) IEEE



n 12.0
x
g
> 11.9
0

z 11.8
s
g
LL 11.7
K
o.-
5

11.6
,[]

..-
0

11,5
6 -2 0 10 12

~ontr; Vol&ge ($

Figure 7. Frequency vs. control voltage for the VCO
shown in figure 6.

Figure 8. A K-band static frequency divider (+ 128)
implemented with an inductively peaked input buffer
(left side of photo).
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Figure 9. Response of the frequency divider (+ 128)
shown in figure 8. The maximum operating fre-
quency is 23 GHz.

The substrate, devices, interconnects, and the
ground-plane are all part of the standard IC proc-
ess.

We have designed and tested a variety of
polyimide MMICS that combine the IBM SiGe
HBT devices [2,3] with polyimide dielectric mi-

crostrip lines [5]. Figures 4 through 9 show
photographs and measured responses of three

SiGe MMICS: a Ku-Band amplifier, a Ku-Band
VCO, and a K-band frequency divider [8]. An
X-band singly-balanced mixer was also reported
at [9].

Flip-Chip MICS

Flip-chip IC attachment has been widely
used in the IC industry recently to reduce the
parasitic associated with the more typical wire
bonding to packages. Flip-chip attachment re-
quires one to place a solder bump on the IC’S
pads. These solder bumps are then placed in
contact with their desired pads on the package
and heated to melt the solder, forming the con-
nection (figure 2).

Figure 10. SEM photograph of a Si die flip-chip
mounted to a Duroid circuit board. The circuit board
contains transmission lines and other distributed
elements. This chip is 1300X 1300 X 750 pm3.

We use the same flip-chip technique to
attach small die (typically discrete transistors) to
microwave circuit boards. Figure 10 shows a
photograph of a small die flip-chip mounted on a
Duroid circuit board. Wire bonding has a large
parasitic inductance that can change from bond
to bond even in automated systems. The flip-
chip MIC combines the repeatable, low parasitic
attachment of solder bumps with the small die
size and high performance one achieves with the
MIC.

The flip-chip MIC approach also allows one
to incorporate a variety of technologies in a sin-

gle circuit. For example, one could use an InP-

based HEMT for an LNA , and on the same cir-

cuit have a high-speed SiGe A-D converter.
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Many more combinations are possible that can

take advantage of the combination of technolo-
gies.
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Figure 11. Small-signal response of Ku-Band flip-
chip MIC amplifier. The gain is 7 dB over the band of
interest.

10 25

d-==k!i
1 1

g
8X 0.5X 10 Pnf Device

2 VE=l.5V, lc=20m.4 5:

Saturated PoweK = 20 mw

,~o
-15 -10 5 10

Inp;t Power fdBm)

Figure 12. Large-signal response of Ku-Band flip-
chip MIC amplifier. 1 dB gain compression occurs at
20 mW output power, = % of that from the amplifier in
figure 4 (which”uses a device 2.5 X larger).
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Figure 13. Response of the Ku-Band frequency di-
vider flipped onto a Duroid substrate. This circuit is
different from that shown in figure 8 only in that it
does not have inductive peaking at the input buffer
and uses two additional divider stages (- 512).

We have designed and tested several SiGe
flip-chip MIC circuits combining the IBM SiGe
HBT with passive elements fabricated on 10 mil
R0301 O Duroid. Small- and large-signal per-
formance of a Ku-Band amplifier are shown in
figures 11 and 12. This amplifier is similar to
that shown in figure 4, but with a much smaller
device (40 pm2 compared to 100 pm2). Charac-
teristics of a Ku-Band frequency divider, similar
to that shown figure 8, are shown in figure 13.

Summary

We have demonstrated two approaches
(polyimide MMIC and flip-chip MIC) for im-
plementing low-loss distributed elements for in-
tegration with Si-based devices. There is a
tradeoff that differentiates the two approaches.
Although the loss of a transmission line on a
thick Duroid board is much lower than that on
thin polyimide, the parasitic associated with the
lines on the Si-based die feeding the bumps and
the bumps themselves impose difficult-to-model
and often significant parasitic; while the para-
sitic associated with the vias in the polyimide
MMIC are much smaller.

By combining the performance achievable
with the MMIC or MIC approach and the low-
cost of Si fabrication (as compared to III-V), the
possibility of highly functional consumer mi-
crowave products may become reality. There are
many applications that require high-volume,
low-cost microwave components.
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